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Abstract: Hardware Accelerator-Based (HAB) CNN Inference is rapidly 

growing in recognition. In many scenarios, to achieve short-time-to-market, HAB 

CNN inference can be outsourced to third parties (3P) for design and deployment. 

These 3P may be malicious and hence embed harmful circuitry in the deployed 

hardware design. Recently, approaches for embedding harmful circuitry targeted 

at collaborative inference have been proposed. These approaches make use of 

statistical analysis on validation dataset (VD) for the design of stealthy attacks on 

the hardware design of CNNs. In this paper, we propose three approaches to 

obscure relevant information regarding the VD that may either achieve the 

detection or mitigation of embedded attacks proposed in these approaches. These 

three approaches include Gaussian Distribution Shifting Approach (GDSA), 

Gaussian Distribution Compression Approach (GDCA) and Gaussian Distribution 

Expansion Approach (GDEA). These approaches are tested on LeNet CNN 

infected with attack proposed in [1] implemented on Xilinx PYNQ-Z1. 
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I. INTRODUCTION 
Hardware Accelerator-Based (HAB) 

Convolutional Neural Network (CNN) inference has 

become very popular in recent times [2] to achieve 

real-time image classification, object recognition [3], [4] 

and so on. To achieve short time-to-market and access to 

state-of-the-art techniques, the mapping and deployment 

of CNN models on Hardware accelerators are often 

outsourced to untrusted third parties (3P). The 3P-IP 

designers may provide soft IPs, firm IPs, or hard IPs to 

the project owner. Due to the untrusted nature of 3P-IP 

designers, hardware intrinsic security of the design may 

be compromised as they may embed malicious circuitry, 

which is very difficult to detect, especially if the 3P-IP 

provides hard IPs such as bitstream files or GDSII files. 

Several approaches of embedding hardware intrinsic 

attacks in deployed CNN inference architecture have 

been studied in the literature. Clements et. al [5] 

proposes an attack that generates perturbations whose 

addition to output feature maps of one or more targeted 

layers of the CNN model in runtime can cause 

misclassification resulting in reduced accuracy. Liu et al. 

in [6] introduce a neural network-based attack with a 

focus on the generation of samples of the input image 

from a CNN model for the trigger and payload design 

with the primary aim of causing misclassification. These 

aforementioned approaches require manipulation of the 

CNN parameters (weights and biases) to achieve their 

aim of misclassification, which can be detected by model 

integrity test on the hardware design. These approaches 

also assume that the attacker has full knowledge of the 

CNN architecture. 

 

CNNs have the inherent attribute of being 

computationally heavy and memory intensive, making 

their deployment of resource- constrained devices 

challenging [7]. This has led to the adoption of 

partitioned CNN models, which employ horizontal and 

vertical collaboration [8–11]. Partitioned CNN models 

can be considered a defense technique against attacks 

because the layers of the CNN can be distributed to 

different 3P-IP designers, no one 3P designer has access 

to the full CNN architecture, making some of the attack 

techniques mentioned above ineffective [12]. Recent 

approaches as seen in [1, 12] and [13] propose attacks 

targeted at hardware CNN model inference employing 

edge offloading of partitioned CNN models where the 

attacker has only access to partial CNN architecture 

(some layers) of the CNN. To design a stealthy attack in 

the aforementioned approaches, the attacker requires a 

validation dataset (VD) for the verification of the 

implementation correctness of the hardware design. The 
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VD gives the untrusted 3P designer insights into the 

behavior of the layers and is hence used to design a 

stealthy attack. These challenges lead to the research 

question of how can the project owner (defender) makes 

the VD secure against potential attacks from malicious 

3P-IP designers. 

 

In this paper, we demonstrate a 

mitigation/detection technique focused on attacks that 

require VD to deploy CNNs on hardware accelerators 

and vulnerabilities that they may introduce. The 

proposed methodology informs how the VD for 

intermediate CNN layers can be modified based on its 

probability distribution function (ModPDF)- that 

prevents the attackers at the untrusted 3PIP from 

exploiting the VD to achieve stealthy hardware attacks. 

This paper studies three different ModPDF techniques, 

shifting, compression, and expansion (detailed in 

Section III). The results show that with the ModPDF 

approaches, the hardware attacks will either become 

detectable or will lead to no triggering of hardware 

attacks whatsoever. This defense approach has no 

hardware overhead. 

 

II. THREAT MODEL 
This work focuses on gray-box attacks where 

the attacker has only partial knowledge of the CNN 

architecture and no knowledge of the training or testing 

dataset. We assume that the third-party IP designer 

(3PIP) requires a VD [14] for the verification of the 

implementation correctness of the CNN hardware 

design. The VD consists of input feature maps and 

corresponding output feature maps of the partitioned 

CNN. We also focus on scenarios where edge offloading 

and collaborative inference is employed in which 

attackers usually design partitioned CNN design without 

the first and final layers (as this is considered as more 

secure [12]). Finally, we also assume the attacker 

provides the CNN hardware design as a bitstream file to 

the defender (the project owner). 

 

III. PROPOSED METHODOLOGY TO MODIFY 

PDF (MODPDF) OF VALIDATION DATASET TO 

SECURE CNN 

Some of the recent hardware attacks on 

distributed CNNs [1], [12] and [13] make use of 3-σ 

analysis on the histogram plots of Gaussian Distributed 

feature maps generated in response to VD to obtain 

rarely occurring Range of Values (RoV) that can be used 

for the trigger design. In this work, we propose the 

modification of the probability density functions 

(ModPDFs) of these VDs that are provided to the 

untrusted third parties to design one part of the 

partitioned CNN, as shown in Fig.1. This work proposes 

three ModPDF approaches for the original validation 

dataset (OVD), namely: Gaussian Distribution Shifting 

Approach (GDSA), Gaussian Distribution Compression 

Approach (GDCA), and Gaussian Distribution 

Expansion Approach (GDEA). These approaches are 

further discussed in subsequent subsections. These 

approaches are used to generate a complementary 

validation dataset (CVD) as shown in Fig. 1 in the design 

phase. These CVDs and the partitioned CNN model are 

provided to the untrusted 3P-IP designers for the 

hardware design. In the testing phase (indicated on the 

right-hand side of Fig. 1), the hardware design IP is 

tested with the OVD by the system integrator, which will 

either lead to the detection or mitigation of any 

embedded malicious circuitry in the hardware design 

(details provided in subsections). 

 

 
Fig. 1: Conceptual depiction of the overall methodology showing the 3 approaches proposed in this work to achieve the 

obscurity of relevant information in the VD. The diagram shows the Gaussian distribution Shifting Approach (GDSA), 

which requires the left or right shift of the Original Gaussian distribution by increasing or decreasing the mean of the 

original dataset. The diagram shows Gaussian distribution Compressing and Expansion Approaches which requires the 

compression and expansion of the Original Gaussian distribution by increasing or decreasing the standard deviation of the 

original dataset. 

 

A. Gaussian Distribution Shifting Approach (GDSA) 

The Gaussian Distribution Shifting Approach 

(GDSA) approach considers a scenario where the 

Original validation dataset (OVD) is altered to create a 

CVD whose mean is centered around the 3-σ region of 

the OVD, i.e., it is shifted either to the left or right as 

shown in Fig. 2. For empirical analysis, we consider 

LeNet CNN [15], and for the sake of argument, it is 

assumed that it is are partitioned from conv2-ip1, as 

shown at the top of the Fig. 2, indicated as CNN and 
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CNN partition. OVD is obtained by using 100 images 

from MNIST dataset [16] and obtained its feature maps 

at the output of pool1 layer. The characteristics of the 

Gaussian PDF of the OVD is obtained and labeled as G 

(see Fig. 2b). The GDSA provides defense by shifting 

the Gaussian PDF (G) of OVD to either left or right as 

illustrated conceptually in Fig. 1 and with empirical 

values in Figs. 2a and 2c. The new data set, CVD, has 

Gaussian PDF of G′S (when it is shifted left, Fig. 2a), and 

G′′S (when shifted right, Fig. 2c). Hence, from Fig. 2, If 

an attacker makes use of values beyond the 3-σ regions 

from GS′ or GS′′ in Fig. 2) for the trigger design, it may 

lead to frequent triggering and hence detection. This is 

because the selected values beyond the 3-σ of GS′ or GS′′ 

lie in the frequently occurring regions of the original 

Gaussian PDF (G). Hence if the attacker makes use of 

values that lie in regions R2, R3 of G′S, or G′′S, it will 

lead to detection. If the attacker makes use of values that 

lie in regions R1, R4 of G′S or G′′S, it will lead to low or 

no triggering of the attack and hence mitigation of the 

attack 

 

 
Fig. 2: 3-σ statistical exploratory analysis of output feature map of pool layer serving as OVD. We observe different 

Gaussian PDFs. Fig. 2b (green) is showing original PDF (G) of the pool feature map. Fig. 2a is illustrating the Gaussian 

PDF whose mean is shifted to the left (the mean of Fig. 2a is the negative 3-σ value of the original Gaussian PDF shown in 

the middle). Similarly, in Fig. 2c, the Gaussian PDF is shifted to the right (mean of Fig. 2c is the positive 3-σ value of Fig. 

2b). 

 
Fig. 3: Depiction of drawback to the GDSA where an estimate of the original low occurring range of values can be obtained 

by generating random values whose mean is centered around zero while maintaining the same standard deviation. Fig. 3b 

shows 3-σ values in the range similar to the original dataset in Fig. 3b. 

 

Limitations of GDSA: As an example, we empirically 

observed that the mean of the feature maps of all the 

layers of LeNet CNN ranges from -100 to 100 

(sometimes very close to zero) shown in the fourth 

column of Table I. Next, by analyzing the shifted CV D, 

CV Ds′, as an example, we realize that its Gaussian PDF, 

G′S, can raise a suspicion alarm for the malicious user if 

it has the understanding of mean behavior of the feature 

maps of similar CNN. This is because the attacker can 

observe that G′S or G′′S have means that are deviated far 

to the left and the right from the observed close to zero 

mean for G, respectively. In such a case, the attacker can 

easily generate a new dataset centered around meanwhile 

intelligently utilizing the known values of σ and RoV to 

generate a new Gaussian PDF, very similar to G. We 

empirically proved this analysis as shown as the 

modified graph G′O in Fig. 3. This new PDF, G′O, can 

neutralize all the defense strategies that are provided by 

the GDSA. To counter this neutralizing technique from 

the attacker, we propose two more techniques (detailed 

in the following two subsections), via compression and 

expansion of the Gaussian PDF, which does not require 

the re-centering of (G). 

 

B. Gaussian Distribution Compression Approach 

(GDCA) 

In Gaussian Distribution Compression 

Approach (GDCA), the standard deviation (σ) of the 

Gaussian PDF (G) of OVD is collected and reduced to 

obtain a reduced deviation which results in the 

compressed Gaussian PDF (G′C), thereby modifying the 

PDF of the original distribution (G) as shown in Fig. 4. 

The compressed Gaussian PDF (G′C) is used to generate 

a complementary dataset. This is provided to the 

third-party designer as shown in Fig. 1. From Fig. 4, it 

can be observed that rarely occurring RoVs that lie 

beyond the 3-σ values of the compressed Gaussian PDF 

(G′C) falls in the region of values of high frequency in the 

original Gaussian distribution G. Hence, GDCA will 

detect attacks or malicious circuits embedded in the 



 
 

Zaynab B. Bello et al.; Middle East Res J. Eng. Technol., Nov-Dec, 2022; 2(2): 60-65 

© 2022 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait  63 
 

 
 

CNN hardware design, which requires rarely occurring 

RoVs obtained from the validation dataset. 

 

C. Gaussian Distribution Expansion Approach 

(GDEA) 

We also propose a Gaussian Distribution 

Expansion Approach (GDEA), like GDCA, the standard 

deviation (σ) of the OVD is collected and increased to 

achieve the expansion and modification of the PDF of 

the original Gaussian distribution (G) to obtain a 

complementary Gaussian PDF (G′E) as shown in Fig. 5. 

The expanded Gaussian PDF (G′E) can be used to 

generate CVD. From Fig. 5, the rarely occurring RoVs 

that lie beyond the 3-σ values of the expanded Gaussian 

distribution (G′E) falls in the region non-existent in 

original Gaussian distribution G. Hence, with GDEA, 

any attack embedded using this approach has a very low 

likelihood of triggering, resulting in the mitigation of 

likely attacks. 

 

 
Fig. 4: Gaussian distribution Compression showing that low occurring values beyond the 3-σ values in Fig. 4b lies in the 

range of values with the probability of high occurrence in Fig. 4a. Hence if the low occurring values of Fig. 4b are used to 

design an attack, it will have high triggering probability lead to detection. 

 

TABLE I: Results showing the comparison between selected RoVs, X,σ, number of triggering (from the attacker’s 

perspective) and number of wrong predictions (from the defender’s perspective) of the original dataset (OVD) in 

comparison with the usage of CVD using our proposed defense approaches (GDSA, GDCA, GDEA) on LeNet CNN 

subjected to SoWaF [1] and FeSHI [12] attacks. 

 

 
 

IV. EXPERIMENT SETUP, RESULTS, AND DISCUSSION 

A. Experimental Setup 

The mapped CNN IP is designed using Xilinx’s 

Vivado and Vivado HLS 2018.3 and to generate an IP. 

Vivado is used to integrate the generated IP with 

AXI-interconnects and ZYNQ processor. The proposed 

methodologies are implemented on LeNet (Fig. 2) 

trained on the MNIST dataset. In this work, we propose 

four different scenarios, where the statistical attributes of 

the output feature maps in response to the VD (OVD or 

CVD) of each layer (from conv2 to ip1) of the partial 

architecture are collected and evaluated. To prove the 

robustness of our defense approach, experiments were 

conducted to test each approach against both SoWaF [1], 

and FeSHI [12] attacks. We implement both attacks on 

the partial architecture and determine the number of 

triggering (from the attacker’s perspective) and the 

number of wrong predictions (from the defender’s 

perspective) using the proposed approaches. 
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Fig. 5: Gaussian distribution Expansion showing that low occurring values beyond the 3-σ values in Fig. 5b lies out of 

bounds of the range of values in Fig. 5a. Hence if the low occurring values of Fig. 5b are used to design an attack, it will 

have very low or no triggering probability lead to mitigation of the attack. 

 

B. Discussions 

Table I shows statistical results and a 

comparison of the three defense approaches and how 

they perform detection or mitigation of these attacks. 

From Table I, a scenario where the attacker has access to 

the OVD (of 100 data instances) from pool1 layer for the 

trigger design. Table I shows the result in terms of the 

number of triggering evident to the attacker in 

comparison with the number of wrong predictions 

experienced by the defender when the hardware design 

of the CNN partition is merged with the full CNN 

architecture and tested with the MNIST image. From 

Table I the percentage number of triggering from the 

attacker is comparable to the number of the wrong 

prediction experienced by the defender for both attacks 

(as shown in rows 5-8 and columns 5-6 of Table I). For 

example, in conv2 layer, the percentage of trigger 

occurrence is 11% with 100 data instances in the VD, 

which translates to 9% of the wrong prediction when 

tested on 1000 images for SoWaF attack. In the GDSA 

ModPDF approach, the mean of the VD provided to the 

attacker is centered around 680 compared to 54.7 of the 

OVD. The RoVs selected for the attacks lie in the region 

(R3) from Fig. 2. From the result, it can be seen that the 

number of wrong predictions visible to the defender is at 

least 5 times more than the rate of triggering of the attack 

visible to the attacker for SoWaF attack. For example, is 

in the case of conv2 layer, the attack percentage of attack 

triggering is 15% on 100 instances of the VD, but the rate 

of wrong prediction evident to the defender is 74% when 

tested on 1000 input images leading to detection of the 

attacks. In the GDCA ModPDF approach, the generated 

(CV D′) is obtained by decreasing the standard deviation 

(σ) of the aggregated OVD. From Table I, it is evident 

that the rate of triggering of the CNN is stealthy from the 

attacker’s point of view but leads to at least 53% rate of 

obtaining wrong prediction (in ip1 layer) at the 

defender’s end during testing for SoWaF attack. This 

leads to the detection of the attacks across all the layers 

of the partitioned CNN mode. Hence GDCA ModPDF 

approach leads to the detection of attacks. In the GDEA 

ModPDF approach, the generated CVD (CV D′) is 

obtained by increasing the standard deviation (σ) of the 

aggregated values of the OVD. This produces an 

expanded Gaussian PDF. From Table I, across all the 

layers of the partitioned CNN model, the number of 

wrong predictions is 0 when the IP design is tested with 

the VD of 1000 input images, Hence the SoWaF attack is 

never triggered. Hence GDEA ModPDF approach leads 

to the mitigation of attacks. Similar behavior can also be 

observed from Table I across all layers for the FeSHI 

attack. 

 

V. CONCLUSION 
This work proposes defense approaches 

targeted at hardware attacks focused on collaborative 

and distributed inference. These hardware attacks 

require a validation dataset (VD) for the design of the 

trigger by the attacker (usually a third-party IP designer). 

Our proposed defense, ModPDF, ensures secure CNN 

inference by modifying the probability density function 

(PDF) of the VD to generate a complementary validation 

dataset given to the third party. We propose three 

modification approaches, namely Gaussian Distribution 

Shifting Approach (GDSA), Gaussian Distribution 

Compression Approach (GDCA), and Gaussian 

Distribution Expansion Approach (GDCA). From the 

results, these approaches successfully detected or 

mitigated the embedded attacks. 
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