Middle East Research Journal of Engineering and Technology mK UWAIT
ISSN: 2789-7737 (Print) ISSN: 2958-2059 (Online) SCHOLARS EUBLISHER
Frequency: Bi-Monthly

DOLI: https://doi.org/10.36348/merjet.2026.v06i01.001

Website: http://www.kspublisher.com/
Email: office@kspublisher.com

Modeling Energy Use Per Generative Al Task: A Simplified Disaggregated
Octave Framework Across End-User, Network, and Cloud Layers

Anders S.G. Andrae'”
"Huawei Technologies Sweden AB, Sweden, Skalholtsgatan 9, 16494 Kista, Sweden

Abstract: The energy consumption of Al and especially individual Al tasks
is complex to measure. A critical aspect of the energy evaluation of Al systems *Corresponding Author:
is the precise definition of both the scope and methodology. It is not evident if Anders 5.G. Andrae
the differentiation should occur at the task level or model level. Here it is argued HUSIZV?LTlichrltologlels&\gzc;(ep tAst Svséeden,
that full task is the best entity for functional unit setting for LCA of Al systems. L I;%ivirz) eite this p;;j;_ B
An example of data analysis is provided to show the usefulness and | AndersS.G. Andrae (2026). Modeling Energy
reasonability of the conceptual and analytical framework which helps identify | Use Per Generative Al Task: A Simplified
hidden drivers. The proposed framework reveals that time-extended service | Disaggregated Octave Framework Across

hases are energy drivers which remain invisible in both interference-only and | Frd-User Network, and Cloud Layers. Middle
p gy , INVIS , ! y East Res J. Eng. Technol, 6(1): 1-10.
average LCA approaches. Main contributions are interaction-level energy Article History:
accounting, theoretical expansion of existing LCA and scaling approaches and | Submit: 07.12.2025 |
identification of dominate non-compute energy drivers. | Accepted: 05.01.2026 |

— - | Published: 09.01.2026 |

Keywords: Cloud, Energy, Electricity, Generative Al, task.
Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution
4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-
commercial use provided the original author and source are credited.

Research Paper

level or model level. For example, fu. such as the
number of prompt tokens for text generation, the number
of bytes for image generation, the number of bytes for
audio recording, the number of bytes for video are
inappropriate as f.u. for Al systems.

INTRODUCTION

The data centers (DCs) are using ever more
power due to servers and others (Andrae, 2023). It has
been estimated that AI DCs could be 20% of United
States DCs electricity use in 2028 (=<100TWh) and all US
DCs up to 12% of US total electricity use (=500 TWh)
(Shehabi et al, 2024). Generally, the energy
consumption of particular Al systems is complex to
measure (Berthelot et al., 2024) and simplifications are
necessary, similar to software systems (Andrae 2024a).
A critical aspect of energy evaluations of Al systems is
the precise definition of both the scope and methodology.
It is not evident if the functional unit (f.u.) in an Al Life
Cycle Assessment (LCA) should be defined on full task

Here the definition of a full GenAl task is: a
single user-initiated interaction that triggers the complete
lifecycle of a service request including all associated
compute, memory, network and service overheads
required to fulfill that interaction.

Table 1 explains why task is better than bytes as
f.u. for AT LCA.

Table 1: Criteria for functional unit setting in AI LCA

Criterion F.u. Task | F.u. Bytes
Represents user function Yes No
Works across modalities Yes No
Normalizes environmental data | Yes No
Scales with complexity Yes No
Promotes useful benchmarking | Yes No

Moreover, the impact of Traditional Al (single
models) and Generative Al (GenAl), featuring variation
of tasks, are different. GenAl tasks have more significant
impact (Desroches, 2025).

The present research is based on reasonable
assumptions and probabilities adapting the method for

data analysis software (Andrae, 2024a) for Al tasks.
Therefore, the present study will only offer an initial
suggestion for energy modeling of Al tasks. Extending
the present research beyond the use stage to LCA is
considered trivial.

Peer Review Process: The Journal “Middle East Research Journal of Engineering and Technology” abides by a double-blind peer review process such that
the journal does not disclose the identity of the reviewer(s) to the author(s) and does not disclose the identity of the author(s) to the reviewer(s).

http://www.kspublisher.com/

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

In summary, for the first time a framework is presented
which include:
1. Time-extended services phases
2. Separation of inference compute vs serving
overhead
3. Training amortization tied structurally to
parameters
4. Sensitivity analysis on system behavior

Experimental Section/Material and Methods
Apart from (Andrae, 2024a) the implementation is based

on (ITU, 2022; Andrae, 2024b)
1

— 2
E,, =CxV°+ s—pXClockChip X Ioff XV (1
Ey = Efactor Xk xT @)
CxV2+

1
7x10ffo
spxClockchip

kpXT 3)

Wchip = Ntransistors,chip X ClOCkchip X Etr X CompUE
“)

Eppop = W (%)

Wchip

Efactor =

where

E..= Dynamic switching energy (J/transistor, J/erased
bit).

C = Load Capacitance (As/V)

V = Voltage across the gate, (V)

sp = switching probability

Clockcpip= Clock frequency (1/s)

I,¢¢= Leaking current drawn by each switch in the off-
state (A)

Efqctor= Dimensionless primary energy/enthropy factor
k,= Boltzmann’s constant (J/K)

T = Temperature at which the transistor is operating (K)
Wenip = Power consumption of one chip (W), energy
Niransistors,chip = Number of transistors in one chip (#)

CompUE= Computational use effectiveness.

Epop = energy use per floating point operation
(J/JFLOP)

FLOPS_p;, = floating point operations per second
performance per chip (FLOPs/s)

Equations (4) and (5) are used in the GenAl calculations
for Model Interference in section C.

The same case study as (Andrae, 2024a) is used
however with GenAl features for the SW analytics.
Similarly, the scope is end-user, network, and cloud
overhead.

The functional unit is “The execution of one
GenAl-assisted analysis task by an individual knowledge
worker, generating a visual analytical output using
cloud-hosted Large Language Model (LLM)
infrastructure in 2024.”

A. End-user Hardware use

This entity of the task energy model is about the
energy used by the end-user device inputting the query
and accessing the output.

It is assumed as in (Andrae 2024a) that the end-
user is using a laptop or desktop for the GenAl analytics
session. These components are included in local device-
side computation and display:

e CPU/GPU usage (light computation, rendering)
Memory and disk
Screen
Network interface (Wi-Fi, Ethernet)
Browser (e.g., chart visualizations)

Table 2 shows the assumptions for power draw.

Table 2: Typical Power Draw of Devices and energy use for typical GenAl session

Component of end-user Power Time Energy (Wh) Reference
device (W) (s)
CPU active ~15W 60 s ~0.25 Wh Cabaret et al., 2025
Display (LCD/LED) ~8 W 120 s ~0.267 Wh Huang ef al., 2025
Disk I/0 ~2 W 10s ~0.006 Wh Ishengoma 2025
Memory/network ~3 W 30s ~0.025 Wh Caiazza et al., 2024
Chart rendering ~5W 40 s ~0.056 Wh Dornauer and Felderer 2023; Horn et
al., 2023
~0.6 Wh TOTAL

B. Network Transfer

This entity of the task energy model is about the
energy used when data are transmitted between the end-
user devices and the cloud service including both the
upload of the user prompt and the download of the
model’s output.

The amount of Wh for network transfer is
uncertain both from Wh/MB and for amounts of MB
viewpoint.

In some cases (with large outputs or explanations), the
size may go up to 10 MB/analysis task. Network transfer
should besides transmission also include:
o Application Programming Interface (API)
routing latency
o Caching/storage overhead
Control flow, encryption, security layers
o Often inflated due to cloud architecture
inefficiencies (e.g., API gateways,
containerized LLM orchestration)

O

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 2 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

o Multiple network hops (user <> API gateway <>
inference server <> postprocessing)

So, network transfer should include more than
raw data movement. It also reflects network-layer
overhead in practical GenAl inference systems.

Wh/MB vary with network type but cloud +
broadband is most common (Guennebaud and Bugeau,
2024). Full top-down view may use 0.22 Wh/MB, fixed

optical 0.03, mobile 0.04, and data centers 0.006
Wh/MB, (Andrae, 2020).

MB/task is likely 0.2 — 0.5 for low tier tasks and
5 - 10 for multimodal high tier tasks. Hence the minimum
energy use is 0.2x(0.03+0.006)=0.0072 Wh and
maximum is 10x0.22=2.2 Wh. Table 3 shows typical
size estimates for data transfer.

Table 3: Typical data size estimate for data transfer

Component of network transfer | Size estimate (MB) | Reference

User prompt — API ~0.01-0.05 Koneva et al., 2025

LLM Model output ~0.05-0.2 Perez et al., 2025

Chart code ~0.2-0.6 Andersson and Grandin, 2025
Orchestration payloads ~0.1-0.3 Andersson and Grandin, 2025
Streaming ~0.5-1 Mukherjee, 2024; Koneva et al, 2025
Total transfer ~1-2 MB TOTAL

According to LCA best practice a conservative
estimate is to be applied so 0.22 Wh/MB is chosen:
Energy (Wh)=Electricity use data transfer,
practical (Wh/MB)xData transferred (MB) = 0.22
Wh/MB x 2 MB/task = 0.44 Wh.

C. Cloud Use
Cloud use for GenAl is here assumed to consist of
e Model Inference
e API/LLM latency
e Memory Overhead
e Query Execution
e Training

1), Model Interference

This entity of cloud use is about the core
computation process where a trained Al model generates
an output. Interference is about using the already trained
Al model to make predictions or generate outputs, i.e.
reasoning by which conclusions are derived from known
premises. The same task can include multiple
interferences. Sometimes one interference is equal to one
task. Here the interference energy is part of the task
energy.

300—600 W per GPU is assumed (Gregersen et
al., 2024). In GenAlI analytics the code + explanation +
chart creation generate ~500-2000 tokens (Hedderich et
al., 2025). A token is a chunk of data used by the Al
model, typically a word or piece of a word. Depending
on latency the inference time is around 5-10 seconds
(Argerich and Patifo-Martinez, 2024; Bian ef al., 2025).
Hence, the energy use for hardware power draw is
400 Wx0.00278 h =1.1 Wh. This reflects moderate
prompt length (~1000-2000 tokens), a single-user batch
(not large-scale interference) and possibly multi-GPU
context window handling. GPUs are often underutilized,
but still draw power. So 1.1 Wh per inference is a

conservative average for GPT-3.5 and GPT-4 class
models.

An alternative method for calculating the
energy use of model interference is to include parameters
and sequence length and combine with equations (4) and
(5). A parameter is an internal variable of a model that
affects how it computes its outputs. The reason is that
parameters is suggested as a very important driver for
interference energy use per task. It is assumed 39.6
billion parameters (Gonzalez-Agirre et al., 2025) and
1000 tokens of sequence length (Hedderich et al, 2025)
—> 2 (multiplication and addition in multi-add operation,
2 FLOPs)x39.6 billionx1000 = 7.92x10'3 FLOPs.

Assumed FLOPS hip/Wenip = 1 TFLOPS/W and Wy, =
400 W.

Time = 7.92x10'3 FLOPs /(400 W x 1x10'2 W/FLOPS)
=0.198 seconds.

Energy (idealistic for pure GPU only) =
400 Wx0.198/3600 h = 0.022 Wh.

However, 0.022 Wh only includes the matrix
multiplications while the memory access, network
stacking, cooling, load balancing, etc are excluded. Due
to whole system power draw in data centers, a system
overhead multiplier must be added. Memory+scheduling
could add ~4 times (Yoon et al., 2025), API latency =3
times (Nou et al., 2025), Query orchestration overhead
~20% (Hammad et al., 2025), PUE 50% (Horner and
Azevedo, 2016) and additional system idle variability ~2
times (Jin et al., 2020). All in all, the cumulative effect
of these overheads could reach =50 times. That is 0.022
Wh more realistically has to be increased to ~1.1 Wh for
interference.

2). API/LLM Latency

This entity of cloud use is about the overhead
energy use associated with running the AI model as a
service.

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 3 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

The API/LLM latency represents the section
where the interference service is active between request

initiation and completion. Table 4 shows examples of
power use for API LLM related components.

Table 4: Examples of power use for API LLM related components

Component Power | Time | Energy Explanation Reference
W)) (Wh)

Container standby 150 W | 245 1.00 Wh | Cloud instance or container kept warm Raza 2021
(warm state) while awaiting user input or returning

results
Token streaming delay | 120 W | 15 0.50 Wh | Slow return of generated text tokens over Katal et al.,
+1/0 WebSocket or API 2022
Prompt context 200W | 10s 0.56 Wh | Video Random-Access Memory (VRAM) Jin et al,
preload preloading of long prompts or embeddings 2020

before generation starts
Retry + orchestration 100W | 10s 0.28 Wh | Sometimes prompts fail or are retried with Jin et al,
fallback fallback chains or formats 2020
Residual idle / buffer S0 W 20s 0.28 Wh | Idle waiting or orchestration-related polling | Katal et al.,
overhead 2022
Total Wh 2.26 Wh

3). Memory Overhead

This entity of the cloud use is about the
additional energy used to keep the Al model and related
data loaded into memory also when the model is not
actively computing.

Memory overhead includes large VRAM
allocation to hold context (prompt + embeddings),
persistent memory during LLM session even when not
actively computing and use of GPU RAM and/or TPU
memory and temporary storage of intermediate
representations.

As far as power sources a single GPU is
assumed to use in idle VRAM state: ~100—150 W and

partially loaded state (holding prompt but not
generating): ~200-250 W (lkram er al, 2017).
Regarding time, 10-30 seconds is assumed while holding
prompt context in memory. This leads to 200 x 25/3600
= 1.39 Wh is used. This means that the present model
assigns the entire power use to one task despite of what
else the GPU is handling.

4). Query Execution

This entity of the cloud use is about the final
stage of processing a GenAl task where the system post-
processes, formats, and delivers the model’s output to the
end-user. Table 5 shows examples of power use for query
execution related components.

Table 5: Examples of power use for query execution related components

Backend Type | Typical use Active Power (W) Reference
vCPU CPU use for parsing, planning ~10-50 W Katal, et al., 2022,
and execution Choochotkaew, et al., 2025
Memory Buffer pool, caching, joins, ~5-30 W Legler, et al., 2025; Centofanti,
sorting etal.. 2024
Disk I/0 (SSD) | Read/writes from local/remote ~5-20 W Centofanti, et al., 2024
storage
Network If distributed query (e.g. cloud ~2-10 W Guo, et al., 2022; Legler, et al.,
DB) 2025; Katal et al., 2022
Container Scheduling, runtime, ~5-10 W Katal, ef al., 2022; Centofanti,
overhead orchestration overhead etal, 2024
TOTAL ~27-120 W (median 73.5 W)

It is assumed that a query runs between 10 and 20
seconds (He et al. 2024), and the mean 15 seconds is
used:

Energy =73.5 W x 15/3600 = 0.3 Wh

For many GenAl analytics queries, ~0.3 Wh is a
reasonable average to allocate to query execution in the
cloud.

5). Training

This entity of the cloud use is about the initial
process where an LLM or GenAl model learns from
massive datasets by adjusting its parameters over many
cycles (epochs). An epoch is the time the model sees
every training sample once. Training is assumed to be
run on more optimized and newer hardware than e.g. the
model interference.

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 4 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

Assumptions: Training tokens 300 billion (Brown et al.
2020), Epochs 3 (Prapas et al., 2021), interference tasks
30 billion (Schwartz et al., 2020).

Training FLOPs: CxParametersx Training
tokensxEpochs = 6 x 39.6 billion % 300 billion x 3 =
2.14x10% FLOPs

C = Architecture-specific constant for FLOPs/token, 6
(Hoffmann et al. 2022)

Assumptions for GPU: 1.2 TFLOPS/W (Khan et al.
2025) and power 700 W (Sun e? al. 2021, Espenshade et

al. 2024).
Time to execute those FLOPs: {700 W x 1.2x10'?
FLOPS/W = 8.4x10! FLOPS} 2.14x10%

FLOPs/8.4x10'* FLOPS = 2.54x108% seconds

Compute energy used: (700 Wx2.54x108 seconds)/3600
=49.5 MWh

Training energy per task: 49.5 MWh/30 billion =
1.65x10 Wh/task

The training energy is modeled as proportional
to the number of model parameters, training tokens and
epochs which is consistent with e.g. (Douwes and
Serizel, 2024).

A. Code in GNU Octave for implementation and chart
creation

The following code is used in GNU Octave (Park, 2021)
to generate Figure 1 and Figure 2.

% genai_energy minimal with values.m

% Minimal + robust: always saves PNGs, also shows
figures if GUI works.

% Adds VALUE LABELS on BOTH plots.

clc; clear; close all;

outdir = fullfile(pwd,'out');

if ~exist(outdir,'dir"), mkdir(outdir); end

%
% ENERGY MODEL
%
EndUser = (15*%60 + 8*%120 + 2*10 + 3*30 + 5*40)/3600;
% Wh

Network = 0.22 * 2; % Wh

parameters = 39.6e9; tokens = 1000;

GPU_power = 400; overhead = 50;

FLOPs = 2*parameters*tokens;

GPU_time = FLOPs/(GPU_power*1el2);

Modellnf = (GPU_power*GPU _time)/3600 * overhead;
% Wh

APl = (150*24 + 120*15 + 200*10 + 100*10 +
50%20)/3600; % Wh

MemOvh= (200%25)/3600; % Wh

Query = (73.5*%15)/3600; % Wh

training_ FLOPs = 6*parameters*300e9*3;
training_perf = 700*1.2*1el2;

training_time = training FLOPs/training_perf;
TrainTask = ((700*training_time)/3600) / 30e9; %
Wh/task

Cloud = Modellnf + API + MemOvh + Query +
TrainTask;
Total = EndUser + Network + Cloud;

%
% PRINT
%
fprintf("\n=== ENERGY PER GENAI TASK ===\n\n");
fprintf('End-user HW: %.4f Wh\n', EndUser);
fprintf('Network: %.4f Wh\n', Network);

fprintf('Model inference: %.4f Wh\n', ModelInf);
fprintf("API latency: %.4f Wh\n', API);

fprintf('Memory overhead: %.4f Wh\n', MemOvh);
fprintf('Query execution: %.4f Wh\n', Query);
fprintf('Training (task): %.2e Wh\n', TrainTask);
fprintf("TOTAL ENERGY: %.4f Wh\n\n', Total);

%
% PLOT 1 (breakdown) + VALUES + SAVE
%
labels1 = {'End-user HW','Network','Model
inference',/API latency',Memory overhead','Query
execution',' Training'};

valsl = [EndUser, Network, Modellnf, API, MemOvh,
Query, TrainTask];

figure('Color','w','Position',[100 100 1200 600]);
barh(vals1); grid on;

ax = gca;
set(ax,'YDir','reverse',"YTick',1:numel(labels1),"Y TickL
abel',labels1,'FontSize',25);

xlabel('Energy per task (Wh)"); title('Energy per GenAl
task’);

xmax = max(valsl);

xoff = 0.02*(xmax + eps);

for i=1:numel(vals1)

if i == numel(vals1)

t = sprintf('%.2¢', vals1(i));

else

t = sprintf('%.4f, vals1(i));

end

text(vals1(i)+xoff, 1, t,
'Vertical Alignment','middle','FontSize',25);
end

xlim([0, xmax*1.25 + eps]);

drawnow;
print(fullfile(outdir,'genai_energy breakdown.png'),'-
dpng','-1200");

%
% SENSITIVITY (Top 10 absolute elasticities)
%
delta=0.01;

baseE = Total;

P={
'tokens', tokens
'parameters', parameters

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait 5

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

'GPU_power', GPU_power
'overhead', overhead
'Wh_per MB, 0.22

'MB per task’, 2
'cont_time', 24
'context_time', 10
'mem_ovh_time', 25
'query_time', 15
'training_tokens', 300e9
'inference_tasks', 30e9

b

S = zeros(size(P,1),1);
lab2 = cell(size(P,1),1);

for i=1:size(P,1)
name = P{i,1};
x0="P{i,2};

x1 = x0*(1+delta);

tok=tokens;
ov=overhead;
whmb=0.22; mb=2; ct=24; cxt=10; mot=25; qt=15;
ttok=300e9; it=30¢9;

par=parameters; gp=GPU_power;

Switch name

Case 'tokens', tok=x1;

Case 'parameters', par=x1;
Case 'GPU_power', gp=x1;
Case 'overhead', ov=x1;

Case 'Wh_per MB', whmb=x1;
Case 'MB_per_task', mb=xI;
Case 'cont_time', ct=x1;

Case 'context_time', cxt=x1;
Case 'mem_ovh_time', mot=x1;
Case 'query_time', qt=x1;

Case 'training_tokens', ttok=x1;
Case 'inference_tasks', it=x1;
End

Network2 = whmb*mb;

FLOPs2 = 2*par*tok;

GPU_time2 = FLOPs2/(gp*1el2);
Modellnf2 = (gp*GPU _time2)/3600 * ov;

API2 = (150%ct + 120%15 + 200%*cxt + 100%10 +
50%20)/3600;
MemOvh2= (200*mot)/3600;

Query2 = (73.5*qt)/3600;

training FLOPs2 = 6*par*ttok*3;

training_perf2 = 700*%1.2*1e12;

training_time2 = training FLOPs2/training_perf2;
TrainTask2 = ((700*training_time2)/3600)/it;
Total2 = EndUser + Network2 + (Modellnf2 + API2 +
MemOvh2 + Query2 + TrainTask2);

S(i) = abs(((Total2-baseE)/baseE)/delta);

lab2{i} = strrep(name,' ,'");

end

[~,ord] = sort(S,'descend");

k = min(10,numel(S));

topS = S(ord(1:k));

topL = lab2(ord(1:k));

%
% PLOT 2 (sensitivity) + VALUES + SAVE
%
figure('Color','w','Position',[120 120 1300 650]);
barh(topS); grid on;

ax = gca;

set(ax,"YDir','reverse','Y Tick',1:k,"Y TickLabel',topL,'Fo
ntSize',25);

xlabel('|(AE/E)/(Ax/x)|"); title('Sensitivity (Top inputs,
absolute)");

xmax = max(topS);
xoff = 0.02*(xmax + eps);

for i=1:k

t = sprintf('%.3g', topS(i));

text(topS(i)+xoff, i, t,
'Vertical Alignment','middle','FontSize',25);

end

xlim([0, xmax*1.25 + eps]);

drawnow;
print(fullfile(outdir,'genai_sensitivity top10.png"),'-
dpng','-r200");

fprintf('Saved PNGs in: %s\n', outdir);

RESULTS AND DISCUSSION

As shown in Figure 1 the API/LLM Latency
component is the largest share of the present task.
Usually interference and training get a lot of attention
when Al energy is discussed.

[© 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 6 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

End-user HW

Network

Model inference

APl latency

Memory overhead

Query execution

Training

Energy per GenAl task
T T

15 2
Energy per task (Wh)

2611

I 1
25 3

Figure 1: Energy use per GenAl task by component.

In total =6.45 Wh per functional unit is used.

Figure 1 is adequately consistent with (Figure
2a for GWP in Berthelot et al., 2024) regarding the
relative shares of the end-user, network and the cloud

entities. This suggests that the proposed simplified
framework is a useful development of state-of-the-art.

Figure 2 shows the result of the sensitivity analysis.

mem ovh time
parameters
tokens
overhead
cont time
context time
Wh per MB

MB per task
query time

training tokens |- 0.000256

0 0.05 0.1

Sensitivity (Top inputs, absolute)
T

0
[(AE/E)/(Axix)|

0.215

.15 0.2 0.25

Figure 2: Sensitivity of Energy use per GenAl task by component

The sensitivity analysis is focused on cloud-side
factors which are directly related to model architecture.
Hence, end-user device energy is driven mainly by user
behavior and device features and is therefore excluded
from the input sensitivity ranking. The time assumed for
memory overhead (25 s) being the most sensitive factor
could be an over-simplification as it does not consider
how GPUs actually schedule memory. Next follows the
39.6 billion parameters used both in model interference
and training and the number of parameters is therefore
and structural driver. The final result is also sensitive for
the 1000 tokens assumption for model interference. After

this the container standby time (24 s active per request)
and prompt context preload time (10 s per request) in the
API LLM segment affect the 6.45 Wh/task the most.

Can tasks be put into a larger context? How
many are performed per year? In 2023 total Al share of
data center electricity use was still limited (Shehabi et
al., 2024). Most installed servers were non-accelerated
and storage and networking were dominated by non-Al
traffic. For Al, non-Al dominated over GenAl. Due to
the lack of data, a scenario-based allocation of the 176
TWh (approximate data center electricity use in the

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 7 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

United States in 2023), the dominance of non-accelerated
servers, and the scale of traditional workloads relative to
GenAl, it is assumed as in Table 6.

Table 6: Data Center tasks and electricity reasonable average intensities in 2024 to achieve total TWh

Task type in data centers Tasks Wh/task, average (entire data | TWh | Share
(trillions) | center including overhead)
non-GenAl 8.33 1.75 15 9%
GenAl 0.278 18 5 3%
Other DC (cloud computing, crypto, traditional | 173 0.9 156 88%
workloads)
176

Table 6 suggests that the numbers of tasks are
counted in trillions and the table may be used to
extrapolate and estimate future electricity demands of
data centers and beyond.

The present investigation offers a preliminary
signal, but the low number of datapoints precludes firm
conclusions about absolute Wh/task values. Anyway, the
analysis code can be reused for further modeling.

The result =6.45 Wh/task is comparable to
(Berthelot et al., 2024) which presented a GenAl LCA of
picture generation. Berthelot et al., 2024, looking at
GenAl and LCA, found that a person visiting the website
and submitting a prompt - generating four images -
caused 7.84 g CO2e¢ for the task, and when using 0.5
gC02e/Wh, =15.6 Wh/task. Another source for GenAl
benchmarks (Table 1 in Desroches et al., 2025) mentions
0.093 Wh/interference task (Low Model size and Chat
use case) to 95.8 Wh/interference task (High Model size
and Agents use case). These numbers do not refer to the
electricity consumption across the whole system caused
by one GenAl interaction. The present method accounts
for time-extended service-level overheads associated
with serving a user request.

CONCLUSION

For the first time, an Octave implementation for
simplified GenAl task energy estimation is developed
capturing the temporal structure of real user interactions.
The implementation is applied to a limited application
suggesting that further research with larger samples is
required to substantiate the conclusion that time-
dominated overheads can outweigh compute-dominated
phases. The implementation works well. Task based
functional units seem most appropriate for specific Al
LCA case studies. However, even though the Wh/task
seems reasonable, more studies including more GenAl
task types are necessary to clearly establish the driving
forces of energy use of individual GenAl tasks and their
overall energy use.

REFERENCES

e Andersson, D., Grandin, P. (2025). Energy
Consumption of GraphQL APIs: Analyzing the

Impact of Optimization Techniques, Workload &
Overfetching. https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1970088
Andrae, A. (2024b). Towards hundred thousand-
fold improvement in energy performance for the
coming ronnabyte era? International Journal of
Advanced Research in Engineering & Management
(IJAREM), 10(4), 1-13.
http://www.ijarem.org/papers/v10-
i4/1.1JAREMG7320.pdf

Andrae, A.S.G. (2020). New perspectives on
internet electricity use in 2030. Engineering and
Applied Science Letter, 3(2), 19-31. DOI:
10.30538/psrp-easl2020.0038

Andrae, A.S.G. (2023). From an Environmental
Viewpoint Large ICT Networks Infrastructure
Equipment must not be Reused. WSEAS
Transactions on Environment and Development, 19,
375-382. DOI: 10.37394/232015.2023.19.34
Andrae, A.S.G. (2024a). Method for calculating the
uncertainty range of avoided primary energy
consumption and environmental impact applied to
data analysis software services and solar electricity.
International Journal of Environmental
Engineering and Development, DOI:
10.37394/232033.2024.2.25

Argerich, M. F., & Patifio-Martinez, M. (2024).
Measuring and improving the energy efficiency of
large language models inference. [EEE Access, 12,
80194-80207. DOI:
10.1109/ACCESS.2024.3409745

Berthelot, A., Caron, E., Jay, M., & Lefévre, L.
(2024). Estimating the environmental impact of
Generative-Al services using an LCA-based
methodology. Procedia CIRP, 122, 707-712. DOI:
10.1016/j.procir.2024.01.098

Bian, S., Yan, M., Jayarajan, A., Pekhimenko, G., &
Venkataraman, S. (2025). What Limits Agentic
Systems Efficiency?. arXiv preprint
arXiv:2510.16276.

Brown, T., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020).
Language models are few-shot learners. Advances in
neural information processing systems, 33, 1877-

1901. DOI: 10.5555/3495724.3495886

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 8 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

Cabaret, L., Hudelot, C., Pierrard, R., & Poli, J. P.
(2025). Efficient Parallel Fuzzy Dilation for Visual
Reasoning on Edge: Leveraging ARM.
In Architecture of Computing Systems: 38th
International Conference, ARCS 2025, Kiel,
Germany, April 2224, 2025, Proceedings (p. 18).
Springer Nature. DOI: https://doi.org/10.1007/978-
3-032-03281-2 2

Caiazza, C., Luconi, V., & Vecchio, A. (2024).
Energy consumption of smartphones and IoT
devices when using different versions of the HTTP
protocol. Pervasive and Mobile Computing, 97,
101871. DOI: 10.1016/j.pmc;j.2024.101871
Centofanti, C., Santos, J., Gudepu, V., & Kondepu,
K. (2024). Impact of power consumption in
containerized clouds: A comprehensive analysis of
open-source power measurement tools. Computer
Networks, 245, 110371. DOI:
10.1016/j.comnet.2024.110371

Choochotkaew, S., Wang, C., Chen, H., Chiba, T.,
Amaral, M., Lee, E. K., & Eilam, T. (2024). A
Robust Power Model Training Framework for
Cloud Native Runtime Energy Metric
Exporter. arXiv preprint arXiv:2407.00878.
Desroches, C., Chauvin, M., Ladan, L., Vateau, C.,
Gosset, S., & Cordier, P. (2025). Exploring the
sustainable scaling of Al dilemma: A projective
study of corporations’ Al environmental
impacts. arXiv preprint arXiv:2501.14334.
Dornauer, B., & Felderer, M. (2023). Energy-saving
strategies for mobile web apps and their
measurement: Results from a decade of research.
In 2023 IEEE/ACM 10th International Conference
on Mobile Software Engineering and Systems
(MOBILESoft) (pp. 75-86). IEEE. DOI:
10.1109/MOBILESoft55845.2023.00014

Douwes, C., & Serizel, R. (2024). From
computation to consumption: Exploring the
compute-energy link for training and testing neural
networks for sed systems. arXiv preprint
arXiv:2409.05080.

Espenshade, C., Peng, R., Hong, E., Calman, M.,
Zhu, Y., Parida, P., ... & Kim, M. A. (2024, April).
Characterizing training performance and energy for
foundation models and image classifiers on multi-
instance GPUs. In Proceedings of the 4th Workshop
on Machine Learning and Systems (pp. 47-55). DOL:
10.1145/3634265.3634312

Gonzalez-Agirre, A., Pamies, M., Llop, J., Baucells,
I, Da Dalt, S., Tamayo, D., ... & Villegas, M.
(2025). Salamandra technical report. arXiv preprint
arXiv:2502.08489.

Gregersen, T., Patel, P., & Choukse, E. (2024).
Input-dependent power usage in gpus. In SC24-W:
Workshops of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (pp. 1872-1877). IEEE. DOI:
10.1109/SC24-W58165.2024.00199

Guennebaud, G., & Bugeau, A. (2024). Energy
consumption of data transfer: Intensity indicators
versus absolute estimates. Journal of Industrial
Ecology, 28(4), 996-1008. DOI: 10.1111/jiec.13499
Guo, B., Yu, J,, Yang, D., Leng, H., & Liao, B.
(2022). Energy-efficient database systems: A
systematic survey. ACM Computing Surveys, 55(6),
1-53. DOI: 10.1145/3502958

Hammad, Y., Ahmad, A. A. S., & Andras, P. (2025).
An empirical study on the performance overhead of
code instrumentation in containerised
microservices. Journal of Systems and Software,
112573. DOI: 10.1016/j.jss.2025.112573

He, Z., Yu, J., Gu, T., & Yang, D. (2024). Query
execution time estimation in graph databases based
on graph neural networks. Journal of King Saud
University-Computer and Information
Sciences, 36(4), 102018. DOI:
10.1016/j.jksuci.2024.03.014

Hedderich, M. A., Wang, A., Zhao, R., Eichin, F.,
Fischer, J., & Plank, B. (2025). What's the
Difference? Supporting Users in Identifying the
Effects of Prompt and Model Changes Through
Token Patterns. arXiv preprint arXiv:2504.15815.
Hoffmann, J., Borgeaud, S., Mensch, A.,
Buchatskaya, E., Cai, T., Rutherford, E., ... & Sifre,
L. (2022). Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556.

Horn, R., Lahnaoui, A., Reinoso, E., Peng, S,
Isakov, V., Islam, T., & Malavolta, 1. (2023). Native
vs web apps: Comparing the energy consumption
and performance of android apps and their web
counterparts. In 2023 IEEE/ACM 10th International
Conference on Mobile Software Engineering and
Systems (MOBILESoft) (pp. 44-54). IEEE. DOI:
10.1109/MOBILESoft55845.2023.00012

Horner, N., & Azevedo, 1. (2016). Power usage
effectiveness in data centers: overloaded and
underachieving. The Electricity Journal, 29(4), 61-
69. DOI: 10.1016/j.tej.2016.04.004

Huang, S., Guo, H., Xia, P., Sun, H., Lu, C., Feng,
Y., ... & Wang, C. (2025). Integrated device of
luminescent solar concentrators and electrochromic
supercapacitors for self-powered smart window and
display. Nature Communications, 16(1),2085. DOI:
10.1038/s41467-025-10549-5

Ikram, M. J., Abulnaja, O. A., Saleh, M. E., & Al-
Hashimi, M. A. (2017). Measuring power and
energy consumption of programs running on kepler
GPUs. In 2017 Intl Conf on Advanced Control
Circuits Systems (ACCS) Systems & 2017 Intl Conf
on New Paradigms in Electronics & Information
Technology (PEIT) (pp. 18-25). 1EEE. DOI:
10.1109/ACCS-PEIT.2017.8303038

International Telecommunication Union. (2022).
ITU-T L.1318 (08/2022): Q factor: A fundamental
metric expressing integrated circuit energy
efficiency.
https://handle.itu.int/11.1002/1000/15027

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 9 |

Anders S.G. Andrae; Middle East Res J. Eng. Technol., Jan-Feb, 2026; 6(1): 1-10

Ishengoma, F. (2025). Enhancing performance of E-
Government information systems with SSD-based
Hadoop mapreduce. Scientific Reports, 15(1), 1-15.
DOI: 10.1038/s41598-025-15854-y

Jin, C., Bai, X., Yang, C., Mao, W., & Xu, X. (2020).
A review of power consumption models of servers
in data centers. Applied Energy, 265, 114806. DOI:
10.1016/j.apenergy.2020.114806

Kansal, A., Zhao, F., Liu, J., Kothari, N., &
Bhattacharya, A. A. (2010). Virtual machine power
metering and provisioning. In Proceedings of the 1st
ACM symposium on Cloud computing (pp. 39-50).
DOI: 10.1145/1807128.1807135

Katal, A., Dahiya, S., & Choudhury, T. (2023).
Energy efficiency in cloud computing data centers:
a survey on software technologies. Cluster
Computing, 26(3), 1845-1875. DOI:
10.1007/s10586-023-03685-0

Khan, S., Naz, N. S., Mazhar, T., Tariq, M. U,,
Shahzad, T., Guizani, S., & Hamam, H. (2025).
Green Al Techniques for Reducing Energy
Consumption in Al Systems. Array, 100652. DOI:
10.1016/j.array.2025.100652

Koneva, N., Navarro, A. L. G., Sanchez-Macian, A.,
Hernéandez, J. A., Zukerman, M., & de Dios, O. G.
(2025). Introducing Large Language Models as the
Next Challenging Internet Traffic Source. arXiv
preprint arXiv:2504.10688.

Legler, J., Werner, S., Borges, M. C., & Tai, S.
(2025). Service-Level Energy Modeling and
Experimentation for Cloud-Native
Microservices. arXiv preprint arXiv:2510.13447.
Mukherjee, D., Sandur, A., Mechitov, K., Lahiri, P.,
& Agha, G. (2024). eScope: A Fine-Grained Power
Prediction Mechanism for Mobile
Applications. arXiv preprint arXiv:2405.08819.
Nou, A., Talluri, S., Iosup, A., & Bonetta, D. (2025).
Investigating Performance Overhead of Distributed
Tracing in Microservices and Serverless Systems.
In Companion of the 16th ACM/SPEC International

Conference on Performance Engineering (pp. 162-
166). DOI: 10.1145/3622028.3622563

Park, Y. (2021). An automatic program of
generation of equation of motion and dynamic
analysis for multi-body mechanical system using
GNU octave. Journal of Applied and Computational
Mechanics, 7(3), 1687-1697. DOI:
10.22055/jacm.2021.19251.2347

Perez-Ramirez, D. F., Kostic, D., & Boman, M.
(2025). CASTILLO: Characterizing Response
Length Distributions of Large Language
Models. arXiv preprint arXiv:2505.16881.

Prapas, 1., Derakhshan, B., Mahdiraji, A. R., &
Markl, V. (2021). Continuous training and
deployment of deep learning models. Datenbank-
Spektrum, 21(3), 203-212. DOI: 10.1007/s13222-
021-00402-4

Raza, S. M., Jeong, J., Kim, M., Kang, B., & Choo,
H. (2021). Empirical performance and energy
consumption evaluation of container solutions on
resource constrained loT gateways. Sensors, 21(4),
1378. DOI: 10.3390/s21041378

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O.
(2020). Green ai. Communications of the
ACM, 63(12), 54-63. DOI: 10.1145/3385128
Shehabi, A., et al. (2024). 2024 United States data
center energy usage report. Lawrence Berkeley
National Laboratory. DOLI:
https://doi.org/10.71468/P1IWC7Q

Sun, Y., Ou, Z., Chen, J., Qi, X., Guo, Y., Cai, S., &
Yan, X. (2021). Evaluating performance, power and
energy of deep neural networks on CPUs and GPUs.
In National conference of theoretical computer
science (pp. 196-221). Singapore: Springer
Singapore. DOI: 10.1007/978-981-16-5673-5 12
Yoon, I., Mun, J., & Min, K. S. (2025). Comparative
Study on Energy Consumption of Neural Networks
by Scaling of Weight-Memory Energy Versus
Computing Energy for Implementing Low-Power
Edge Intelligence. Electronics, 14(13), 2718. DOI:
10.3390/electronics14132718.

| © 2026 Middle East Research Journal of Engineering and Technology | Published by Kuwait Scholars Publisher, Kuwait | 10 |

