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Abstract: The energy consumption of AI and especially individual AI tasks 

is complex to measure. A critical aspect of the energy evaluation of AI systems 

is the precise definition of both the scope and methodology. It is not evident if 

the differentiation should occur at the task level or model level. Here it is argued 

that full task is the best entity for functional unit setting for LCA of AI systems. 

An example of data analysis is provided to show the usefulness and 

reasonability of the conceptual and analytical framework which helps identify 

hidden drivers. The proposed framework reveals that time-extended service 

phases are energy drivers which remain invisible in both interference-only and 

average LCA approaches. Main contributions are interaction-level energy 

accounting, theoretical expansion of existing LCA and scaling approaches and 

identification of dominate non-compute energy drivers. 
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INTRODUCTION 
The data centers (DCs) are using ever more 

power due to servers and others (Andrae, 2023). It has 

been estimated that AI DCs could be 20% of United 

States DCs electricity use in 2028 (≈100TWh) and all US 

DCs up to 12% of US total electricity use (≈500 TWh) 

(Shehabi et al., 2024). Generally, the energy 

consumption of particular AI systems is complex to 

measure (Berthelot et al., 2024) and simplifications are 

necessary, similar to software systems (Andrae 2024a). 

A critical aspect of energy evaluations of AI systems is 

the precise definition of both the scope and methodology. 

It is not evident if the functional unit (f.u.) in an AI Life 

Cycle Assessment (LCA) should be defined on full task 

level or model level. For example, f.u. such as the 

number of prompt tokens for text generation, the number 

of bytes for image generation, the number of bytes for 

audio recording, the number of bytes for video are 

inappropriate as f.u. for AI systems. 

 

Here the definition of a full GenAI task is: a 

single user-initiated interaction that triggers the complete 

lifecycle of a service request including all associated 

compute, memory, network and service overheads 

required to fulfill that interaction. 

 

Table 1 explains why task is better than bytes as 

f.u. for AI LCA. 

 

Table 1: Criteria for functional unit setting in AI LCA 

Criterion F.u. Task F.u. Bytes 

Represents user function Yes No 

Works across modalities Yes No 

Normalizes environmental data Yes No 

Scales with complexity Yes No 

Promotes useful benchmarking Yes No 

 

Moreover, the impact of Traditional AI (single 

models) and Generative AI (GenAI), featuring variation 

of tasks, are different. GenAI tasks have more significant 

impact (Desroches, 2025). 

 

The present research is based on reasonable 

assumptions and probabilities adapting the method for 

data analysis software (Andrae, 2024a) for AI tasks. 

Therefore, the present study will only offer an initial 

suggestion for energy modeling of AI tasks. Extending 

the present research beyond the use stage to LCA is 

considered trivial. 
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In summary, for the first time a framework is presented 

which include: 

1. Time-extended services phases 

2. Separation of inference compute vs serving 

overhead 

3. Training amortization tied structurally to 

parameters 

4. Sensitivity analysis on system behavior 

 

Experimental Section/Material and Methods 

Apart from (Andrae, 2024a) the implementation is based 

on (ITU, 2022; Andrae, 2024b) 

𝐸𝑡𝑟 = 𝐶 × 𝑉2 +
1

𝑠𝑝×𝐶𝑙𝑜𝑐𝑘𝑐ℎ𝑖𝑝
× 𝐼𝑜𝑓𝑓 × 𝑉   (1) 

𝐸𝑡𝑟 = 𝐸𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑘𝑏 × 𝑇     (2) 

𝐸𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐶×𝑉2+

1

𝑠𝑝×𝐶𝑙𝑜𝑐𝑘𝑐ℎ𝑖𝑝
×𝐼𝑜𝑓𝑓×𝑉

𝑘𝑏×𝑇
   (3) 

𝑊𝑐ℎ𝑖𝑝 = 𝑁𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠,𝑐ℎ𝑖𝑝 × 𝐶𝑙𝑜𝑐𝑘𝑐ℎ𝑖𝑝 × 𝐸𝑡𝑟 × 𝐶𝑜𝑚𝑝𝑈𝐸

   (4) 

𝐸𝐹𝐿𝑂𝑃 =
1

(
𝐹𝐿𝑂𝑃𝑆𝑐ℎ𝑖𝑝

𝑊𝑐ℎ𝑖𝑝
)

   (5) 

where 

 

𝐸𝑡𝑟= Dynamic switching energy (J/transistor, J/erased 

bit).  

𝐶 = Load Capacitance (As/V) 

𝑉 = Voltage across the gate, (V)  

𝑠𝑝 = switching probability  

𝐶𝑙𝑜𝑐𝑘𝑐ℎ𝑖𝑝= Clock frequency (1/s)   

𝐼𝑜𝑓𝑓= Leaking current drawn by each switch in the off-

state (A)  

𝐸𝑓𝑎𝑐𝑡𝑜𝑟= Dimensionless primary energy/enthropy factor  

𝑘𝑏= Boltzmann’s constant (J/K) 

𝑇 = Temperature at which the transistor is operating (K) 

𝑊𝑐ℎ𝑖𝑝 = Power consumption of one chip (W), energy 

𝑁𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟𝑠,𝑐ℎ𝑖𝑝 = Number of transistors in one chip (#)  

𝐶𝑜𝑚𝑝𝑈𝐸= Computational use effectiveness.  

𝐸𝐹𝐿𝑂𝑃  = energy use per floating point operation 

(J/FLOP) 

𝐹𝐿𝑂𝑃𝑆𝑐ℎ𝑖𝑝 = floating point operations per second 

performance per chip (FLOPs/s)  

 

Equations (4) and (5) are used in the GenAI calculations 

for Model Interference in section C. 

 

The same case study as (Andrae, 2024a) is used 

however with GenAI features for the SW analytics. 

Similarly, the scope is end-user, network, and cloud 

overhead. 

 

The functional unit is “The execution of one 

GenAI-assisted analysis task by an individual knowledge 

worker, generating a visual analytical output using 

cloud-hosted Large Language Model (LLM) 

infrastructure in 2024.” 

 

A. End-user Hardware use 

This entity of the task energy model is about the 

energy used by the end-user device inputting the query 

and accessing the output. 

 

It is assumed as in (Andrae 2024a) that the end-

user is using a laptop or desktop for the GenAI analytics 

session. These components are included in local device-

side computation and display: 

• CPU/GPU usage (light computation, rendering) 

• Memory and disk  

• Screen  

• Network interface (Wi-Fi, Ethernet) 

• Browser (e.g., chart visualizations) 

 

Table 2 shows the assumptions for power draw. 

 

Table 2: Typical Power Draw of Devices and energy use for typical GenAI session 

Component of end-user 

device 

Power 

(W) 

Time 

(s) 

Energy (Wh) Reference 

CPU active ~15 W 60 s ~0.25 Wh Cabaret et al., 2025 

Display (LCD/LED) ~8 W 120 s ~0.267 Wh Huang et al., 2025 

Disk I/O ~2 W 10 s ~0.006 Wh Ishengoma 2025 

Memory/network ~3 W 30 s ~0.025 Wh Caiazza et al., 2024 

Chart rendering ~5 W 40 s ~0.056 Wh Dornauer and Felderer 2023; Horn et 

al., 2023 

   ~0.6 Wh TOTAL  

 

B. Network Transfer 

This entity of the task energy model is about the 

energy used when data are transmitted between the end-

user devices and the cloud service including both the 

upload of the user prompt and the download of the 

model’s output. 

 

The amount of Wh for network transfer is 

uncertain both from Wh/MB and for amounts of MB 

viewpoint. 

In some cases (with large outputs or explanations), the 

size may go up to 10 MB/analysis task. Network transfer 

should besides transmission also include: 

o Application Programming Interface (API) 

routing latency 

o Caching/storage overhead 

o Control flow, encryption, security layers 

o Often inflated due to cloud architecture 

inefficiencies (e.g., API gateways, 

containerized LLM orchestration) 
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o Multiple network hops (user ↔ API gateway ↔ 

inference server ↔ postprocessing) 

 

So, network transfer should include more than 

raw data movement. It also reflects network-layer 

overhead in practical GenAI inference systems. 
 

Wh/MB vary with network type but cloud + 

broadband is most common (Guennebaud and Bugeau, 

2024). Full top-down view may use 0.22 Wh/MB, fixed 

optical 0.03, mobile 0.04, and data centers 0.006 

Wh/MB, (Andrae, 2020). 

 

MB/task is likely 0.2 – 0.5 for low tier tasks and 

5 - 10 for multimodal high tier tasks. Hence the minimum 

energy use is 0.2×(0.03+0.006)=0.0072 Wh and 

maximum is 10×0.22=2.2 Wh. Table 3 shows typical 

size estimates for data transfer. 

 

Table 3: Typical data size estimate for data transfer 

Component of network transfer Size estimate (MB) Reference 

User prompt → API ~0.01–0.05  Koneva et al., 2025 

LLM Model output ~0.05–0.2  Perez et al., 2025 

Chart code ~0.2–0.6  Andersson and Grandin, 2025 

Orchestration payloads ~0.1–0.3  Andersson and Grandin, 2025 

Streaming ~0.5–1  Mukherjee, 2024; Koneva et al, 2025 

Total transfer ~1–2 MB TOTAL  

 

According to LCA best practice a conservative 

estimate is to be applied so 0.22 Wh/MB is chosen: 

Energy (Wh)=Electricity use data transfer, 

practical (Wh/MB)×Data transferred (MB) = 0.22 

Wh/MB × 2 MB/task = 0.44 Wh. 

 

C. Cloud Use 

Cloud use for GenAI is here assumed to consist of  

• Model Inference 

• API/LLM latency 

• Memory Overhead 

• Query Execution 

• Training 

 

1), Model Interference 

This entity of cloud use is about the core 

computation process where a trained AI model generates 

an output. Interference is about using the already trained 

AI model to make predictions or generate outputs, i.e. 

reasoning by which conclusions are derived from known 

premises. The same task can include multiple 

interferences. Sometimes one interference is equal to one 

task. Here the interference energy is part of the task 

energy. 

 

300–600 W per GPU is assumed (Gregersen et 

al., 2024). In GenAI analytics the code + explanation + 

chart creation generate ~500–2000 tokens (Hedderich et 

al., 2025). A token is a chunk of data used by the AI 

model, typically a word or piece of a word. Depending 

on latency the inference time is around 5–10 seconds 

(Argerich and Patiño-Martínez, 2024; Bian et al., 2025). 

Hence, the energy use for hardware power draw is 

400 W×0.00278 h = 1.1 Wh. This reflects moderate 

prompt length (~1000–2000 tokens), a single-user batch 

(not large-scale interference) and possibly multi-GPU 

context window handling. GPUs are often underutilized, 

but still draw power. So 1.1 Wh per inference is a 

conservative average for GPT-3.5 and GPT-4 class 

models. 

An alternative method for calculating the 

energy use of model interference is to include parameters 

and sequence length and combine with equations (4) and 

(5). A parameter is an internal variable of a model that 

affects how it computes its outputs. The reason is that 

parameters is suggested as a very important driver for 

interference energy use per task. It is assumed 39.6 

billion parameters (Gonzalez-Agirre et al., 2025) and 

1000 tokens of sequence length (Hedderich et al, 2025) 

→ 2 (multiplication and addition in multi-add operation, 

2 FLOPs)×39.6 billion×1000 = 7.92×1013 FLOPs. 

 

Assumed FLOPSchip/Wchip = 1 TFLOPS/W and Wchip = 

400 W. 

Time = 7.92×1013 FLOPs /(400 W × 1×1012 W/FLOPS) 

= 0.198 seconds. 

Energy (idealistic for pure GPU only) = 

400 W×0.198/3600 h = 0.022 Wh. 

 

However, 0.022 Wh only includes the matrix 

multiplications while the memory access, network 

stacking, cooling, load balancing, etc are excluded. Due 

to whole system power draw in data centers, a system 

overhead multiplier must be added. Memory+scheduling 

could add ≈4 times (Yoon et al., 2025), API latency ≈3 

times (Nõu et al., 2025), Query orchestration overhead 

≈20% (Hammad et al., 2025), PUE 50% (Horner and 

Azevedo, 2016) and additional system idle variability ≈2 

times (Jin et al., 2020). All in all, the cumulative effect 

of these overheads could reach ≈50 times. That is 0.022 

Wh more realistically has to be increased to ≈1.1 Wh for 

interference. 

 

2). API/LLM Latency 

This entity of cloud use is about the overhead 

energy use associated with running the AI model as a 

service. 
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The API/LLM latency represents the section 

where the interference service is active between request 

initiation and completion. Table 4 shows examples of 

power use for API LLM related components. 

 

Table 4: Examples of power use for API LLM related components 

Component Power 

(W) 

Time 

(s) 

Energy 

(Wh) 

Explanation Reference 

Container standby 

(warm state) 

150 W 24 s 1.00 Wh Cloud instance or container kept warm 

while awaiting user input or returning 

results 

Raza 2021 

Token streaming delay 

+ I/O 

120 W 15 s 0.50 Wh Slow return of generated text tokens over 

WebSocket or API 

Katal et al., 

2022 

Prompt context 

preload 

200 W 10 s 0.56 Wh Video Random-Access Memory (VRAM) 

preloading of long prompts or embeddings 

before generation starts 

Jin et al., 

2020 

Retry + orchestration 

fallback 

100 W 10 s 0.28 Wh Sometimes prompts fail or are retried with 

fallback chains or formats 

Jin et al., 

2020 

Residual idle / buffer 

overhead 

50 W 20 s 0.28 Wh Idle waiting or orchestration-related polling Katal et al., 

2022 

Total Wh   2.26  Wh   

 

3). Memory Overhead 

This entity of the cloud use is about the 

additional energy used to keep the AI model and related 

data loaded into memory also when the model is not 

actively computing. 

 

Memory overhead includes large VRAM 

allocation to hold context (prompt + embeddings), 

persistent memory during LLM session even when not 

actively computing and use of GPU RAM and/or TPU 

memory and temporary storage of intermediate 

representations. 

 

As far as power sources a single GPU is 

assumed to use in idle VRAM state: ~100–150 W and 

partially loaded state (holding prompt but not 

generating): ~200–250 W (Ikram et al., 2017). 

Regarding time, 10–30 seconds is assumed while holding 

prompt context in memory. This leads to 200 × 25/3600 

= 1.39 Wh is used. This means that the present model 

assigns the entire power use to one task despite of what 

else the GPU is handling. 

 

4). Query Execution 

This entity of the cloud use is about the final 

stage of processing a GenAI task where the system post-

processes, formats, and delivers the model’s output to the 

end-user. Table 5 shows examples of power use for query 

execution related components. 

 

Table 5: Examples of power use for query execution related components 

Backend Type Typical use Active Power (W) Reference 

vCPU CPU use for parsing, planning 

and execution 

~10–50 W Katal, et al., 2022, 

Choochotkaew, et al., 2025 

Memory Buffer pool, caching, joins, 

sorting 

~5–30 W Legler, et al., 2025; Centofanti, 

et al.. 2024 

Disk I/O (SSD) Read/writes from local/remote 

storage 

~5–20 W Centofanti, et al., 2024 

Network If distributed query (e.g. cloud 

DB) 

~2–10 W Guo, et al., 2022; Legler, et al., 

2025; Katal et al., 2022 

Container 

overhead 

Scheduling, runtime, 

orchestration overhead 

~5–10 W Katal, et al., 2022; Centofanti, 

et al., 2024 

TOTAL  ~27–120 W (median 73.5 W)  

 

It is assumed that a query runs between 10 and 20 

seconds (He et al. 2024), and the mean 15 seconds is 

used: 

Energy = 73.5 W × 15/3600 = 0.3 Wh 

For many GenAI analytics queries, ~0.3 Wh is a 

reasonable average to allocate to query execution in the 

cloud. 

 

5). Training 

This entity of the cloud use is about the initial 

process where an LLM or GenAI model learns from 

massive datasets by adjusting its parameters over many 

cycles (epochs). An epoch is the time the model sees 

every training sample once. Training is assumed to be 

run on more optimized and newer hardware than e.g. the 

model interference. 
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Assumptions: Training tokens 300 billion (Brown et al. 

2020), Epochs 3 (Prapas et al., 2021), interference tasks 

30 billion (Schwartz et al., 2020). 

 

Training FLOPs: C×Parameters×Training 

tokens×Epochs = 6 × 39.6 billion × 300 billion × 3 = 

2.14×1023 FLOPs 

C = Architecture-specific constant for FLOPs/token, 6 

(Hoffmann et al. 2022) 

Assumptions for GPU: 1.2 TFLOPS/W (Khan et al. 

2025) and power 700 W (Sun et al. 2021, Espenshade et 

al. 2024). 

Time to execute those FLOPs: {700 W × 1.2×1012 

FLOPS/W = 8.4×1014 FLOPS} 2.14×1023 

FLOPs/8.4×1014 FLOPS = 2.54×108 seconds 

Compute energy used: (700 W×2.54×108 seconds)/3600 

= 49.5 MWh 

Training energy per task: 49.5 MWh/30 billion = 

1.65×10-3 Wh/task 

 

The training energy is modeled as proportional 

to the number of model parameters, training tokens and 

epochs which is consistent with e.g. (Douwes and 

Serizel, 2024). 

 

A. Code in GNU Octave for implementation and chart 

creation 

The following code is used in GNU Octave (Park, 2021) 

to generate Figure 1 and Figure 2.  

% genai_energy_minimal_with_values.m 

% Minimal + robust: always saves PNGs, also shows 

figures if GUI works. 

% Adds VALUE LABELS on BOTH plots. 

clc; clear; close all; 

outdir = fullfile(pwd,'out'); 

if ~exist(outdir,'dir'), mkdir(outdir); end 

% ============================ 

% ENERGY MODEL 

% ============================ 

EndUser = (15*60 + 8*120 + 2*10 + 3*30 + 5*40)/3600; 

% Wh 

Network = 0.22 * 2; % Wh 

parameters = 39.6e9; tokens = 1000; 

GPU_power = 400; overhead = 50; 

FLOPs = 2*parameters*tokens; 

GPU_time = FLOPs/(GPU_power*1e12); 

ModelInf = (GPU_power*GPU_time)/3600 * overhead; 

% Wh 

API = (150*24 + 120*15 + 200*10 + 100*10 + 

50*20)/3600; % Wh 

MemOvh= (200*25)/3600; % Wh 

Query = (73.5*15)/3600; % Wh 

 

training_FLOPs = 6*parameters*300e9*3; 

training_perf = 700*1.2*1e12; 

training_time = training_FLOPs/training_perf; 

TrainTask = ((700*training_time)/3600) / 30e9; % 

Wh/task 

 

Cloud = ModelInf + API + MemOvh + Query + 

TrainTask; 

Total = EndUser + Network + Cloud; 

 

% ============================ 

% PRINT 

% ============================ 

fprintf('\n=== ENERGY PER GENAI TASK ===\n\n'); 

fprintf('End-user HW: %.4f Wh\n', EndUser); 

fprintf('Network: %.4f Wh\n', Network); 

fprintf('Model inference: %.4f Wh\n', ModelInf); 

fprintf('API latency: %.4f Wh\n', API); 

fprintf('Memory overhead: %.4f Wh\n', MemOvh); 

fprintf('Query execution: %.4f Wh\n', Query); 

fprintf('Training (task): %.2e Wh\n', TrainTask); 

fprintf('TOTAL ENERGY: %.4f Wh\n\n', Total); 

 

% ============================ 

% PLOT 1 (breakdown) + VALUES + SAVE 

% ============================ 

labels1 = {'End-user HW','Network','Model 

inference','API latency','Memory overhead','Query 

execution','Training'}; 

vals1 = [EndUser, Network, ModelInf, API, MemOvh, 

Query, TrainTask]; 

 

figure('Color','w','Position',[100 100 1200 600]); 

barh(vals1); grid on; 

ax = gca; 

set(ax,'YDir','reverse','YTick',1:numel(labels1),'YTickL

abel',labels1,'FontSize',25); 

xlabel('Energy per task (Wh)'); title('Energy per GenAI 

task'); 

 

xmax = max(vals1); 

xoff = 0.02*(xmax + eps); 

for i=1:numel(vals1) 

if i == numel(vals1) 

t = sprintf('%.2e', vals1(i)); 

else 

t = sprintf('%.4f', vals1(i)); 

end 

text(vals1(i)+xoff, i, t, 

'VerticalAlignment','middle','FontSize',25); 

end 

xlim([0, xmax*1.25 + eps]); 

 

drawnow; 

print(fullfile(outdir,'genai_energy_breakdown.png'),'-

dpng','-r200'); 

 

% ============================ 

% SENSITIVITY (Top 10 absolute elasticities) 

% ============================ 

delta = 0.01; 

baseE = Total; 

 

P = { 

'tokens', tokens 

'parameters', parameters 
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'GPU_power', GPU_power 

'overhead', overhead 

'Wh_per_MB', 0.22 

'MB_per_task', 2 

'cont_time', 24 

'context_time', 10 

'mem_ovh_time', 25 

'query_time', 15 

'training_tokens', 300e9 

'inference_tasks', 30e9 

}; 

 

S = zeros(size(P,1),1); 

lab2 = cell(size(P,1),1); 

 

for i=1:size(P,1) 

name = P{i,1}; 

x0 = P{i,2}; 

x1 = x0*(1+delta); 

 

tok=tokens; par=parameters; gp=GPU_power; 

ov=overhead; 

whmb=0.22; mb=2; ct=24; cxt=10; mot=25; qt=15; 

ttok=300e9; it=30e9; 

 

Switch name 

Case 'tokens', tok=x1; 

Case 'parameters', par=x1; 

Case 'GPU_power', gp=x1; 

Case 'overhead', ov=x1; 

Case 'Wh_per_MB', whmb=x1; 

Case 'MB_per_task', mb=x1; 

Case 'cont_time', ct=x1; 

Case 'context_time', cxt=x1; 

Case 'mem_ovh_time', mot=x1; 

Case 'query_time', qt=x1; 

Case 'training_tokens', ttok=x1; 

Case 'inference_tasks', it=x1; 

End 

 

Network2 = whmb*mb; 

FLOPs2 = 2*par*tok; 

GPU_time2 = FLOPs2/(gp*1e12); 

ModelInf2 = (gp*GPU_time2)/3600 * ov; 

 

API2 = (150*ct + 120*15 + 200*cxt + 100*10 + 

50*20)/3600; 

MemOvh2= (200*mot)/3600; 

Query2 = (73.5*qt)/3600; 

 

training_FLOPs2 = 6*par*ttok*3; 

training_perf2 = 700*1.2*1e12; 

training_time2 = training_FLOPs2/training_perf2; 

TrainTask2 = ((700*training_time2)/3600)/it; 

Total2 = EndUser + Network2 + (ModelInf2 + API2 + 

MemOvh2 + Query2 + TrainTask2); 

S(i) = abs(((Total2-baseE)/baseE)/delta); 

lab2{i} = strrep(name,'_',' '); 

end 

 [~,ord] = sort(S,'descend'); 

k = min(10,numel(S)); 

topS = S(ord(1:k)); 

topL = lab2(ord(1:k)); 

 

% ============================ 

% PLOT 2 (sensitivity) + VALUES + SAVE 

% ============================ 

figure('Color','w','Position',[120 120 1300 650]); 

barh(topS); grid on; 

ax = gca; 

set(ax,'YDir','reverse','YTick',1:k,'YTickLabel',topL,'Fo

ntSize',25); 

xlabel('|(ΔE/E)/(Δx/x)|'); title('Sensitivity (Top inputs, 

absolute)'); 

 

xmax = max(topS); 

xoff = 0.02*(xmax + eps); 

for i=1:k 

t = sprintf('%.3g', topS(i)); 

text(topS(i)+xoff, i, t, 

'VerticalAlignment','middle','FontSize',25); 

end 

xlim([0, xmax*1.25 + eps]); 

 

drawnow; 

print(fullfile(outdir,'genai_sensitivity_top10.png'),'-

dpng','-r200'); 

 

fprintf('Saved PNGs in: %s\n', outdir); 

 

RESULTS AND DISCUSSION 
As shown in Figure 1 the API/LLM Latency 

component is the largest share of the present task. 

Usually interference and training get a lot of attention 

when AI energy is discussed. 
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Figure 1: Energy use per GenAI task by component. 

 

In total ≈6.45 Wh per functional unit is used. 

 

Figure 1 is adequately consistent with (Figure 

2a for GWP in Berthelot et al., 2024) regarding the 

relative shares of the end-user, network and the cloud 

entities. This suggests that the proposed simplified 

framework is a useful development of state-of-the-art. 

 

Figure 2 shows the result of the sensitivity analysis. 

 

 
Figure 2: Sensitivity of Energy use per GenAI task by component 

 

The sensitivity analysis is focused on cloud-side 

factors which are directly related to model architecture. 

Hence, end-user device energy is driven mainly by user 

behavior and device features and is therefore excluded 

from the input sensitivity ranking. The time assumed for 

memory overhead (25 s) being the most sensitive factor 

could be an over-simplification as it does not consider 

how GPUs actually schedule memory. Next follows the 

39.6 billion parameters used both in model interference 

and training and the number of parameters is therefore 

and structural driver. The final result is also sensitive for 

the 1000 tokens assumption for model interference. After 

this the container standby time (24 s active per request) 

and prompt context preload time (10 s per request) in the 

API LLM segment affect the 6.45 Wh/task the most. 

 

Can tasks be put into a larger context? How 

many are performed per year? In 2023 total AI share of 

data center electricity use was still limited (Shehabi et 

al., 2024). Most installed servers were non-accelerated 

and storage and networking were dominated by non-AI 

traffic. For AI, non-AI dominated over GenAI. Due to 

the lack of data, a scenario-based allocation of the 176 

TWh (approximate data center electricity use in the 
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United States in 2023), the dominance of non-accelerated 

servers, and the scale of traditional workloads relative to 

GenAI, it is assumed as in Table 6. 

 

Table 6: Data Center tasks and electricity reasonable average intensities in 2024 to achieve total TWh 

Task type in data centers Tasks 

(trillions) 

Wh/task, average (entire data 

center including overhead) 

TWh Share 

non-GenAI 8.33 1.75 15 9% 

GenAI 0.278 18 5 3% 

Other DC (cloud computing, crypto, traditional 

workloads) 

173 0.9 156 88% 

   
176  

 

Table 6 suggests that the numbers of tasks are 

counted in trillions and the table may be used to 

extrapolate and estimate future electricity demands of 

data centers and beyond. 

 

The present investigation offers a preliminary 

signal, but the low number of datapoints precludes firm 

conclusions about absolute Wh/task values. Anyway, the 

analysis code can be reused for further modeling. 

 

The result ≈6.45 Wh/task is comparable to 

(Berthelot et al., 2024) which presented a GenAI LCA of 

picture generation. Berthelot et al., 2024, looking at 

GenAI and LCA, found that a person visiting the website 

and submitting a prompt - generating four images - 

caused 7.84 g CO2e for the task, and when using 0.5 

gCO2e/Wh, ≈15.6 Wh/task. Another source for GenAI 

benchmarks (Table 1 in Desroches et al., 2025) mentions 

0.093 Wh/interference task (Low Model size and Chat 

use case) to 95.8 Wh/interference task (High Model size 

and Agents use case). These numbers do not refer to the 

electricity consumption across the whole system caused 

by one GenAI interaction. The present method accounts 

for time-extended service-level overheads associated 

with serving a user request. 

 

CONCLUSION 
For the first time, an Octave implementation for 

simplified GenAI task energy estimation is developed 

capturing the temporal structure of real user interactions. 

The implementation is applied to a limited application 

suggesting that further research with larger samples is 

required to substantiate the conclusion that time-

dominated overheads can outweigh compute-dominated 

phases. The implementation works well. Task based 

functional units seem most appropriate for specific AI 

LCA case studies. However, even though the Wh/task 

seems reasonable, more studies including more GenAI 

task types are necessary to clearly establish the driving 

forces of energy use of individual GenAI tasks and their 

overall energy use. 
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